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Abstract
Let L be a non-negative self-adjoint operator in a Hilbert space H0 with inner
product 〈· , ·〉0 and let ϕ be a singular element belonging to H−k−1\H−k

with k � 2 (high order), where {Hs}∞s=−∞ is the scale of Hilbert spaces
associated with L in H. For the formal singular perturbation of L generated
by ϕ self-adjoint realizations H(g) in a Pontryagin space are considered
and approximations of these realizations by suitable smoother models are
investigated. The realizations H(g) are described by k real parameters (gs)

k
s=1

and given in a Pontryagin space �(ḡ) of the form H0 ⊕ C
m ⊕ C

m, which is
equipped with an inner product having m = [

k
2

]
negative squares and depending

on parameters ḡ = (gs)
2m
s=2. The approximating model includes a sequence of

variable Pontryagin spaces K(γ (n)) of the form H0 ⊕ C
k−1 and a sequence of

self-adjoint operators A(γ (n)) in K(γ (n)), parametrized by a sequence (γ (n)
s )ks=1

of k real parameters. Approximation of the realization �(ḡ),H(g) is deduced
from the approximation of ϕ by smoother elements ψ(n) from H−2 and under
the asymptotic behaviour of parameters γ (n)

s + 〈(L − µ)−sψ(n), ψ(n)〉0 → gs ,
(µ < 0 is a normalization point). The approximation is described in terms of the
generalized resolvent convergence of suitable realizations A(γ (n)) → H(g).
Examples and applications are discussed.

PACS numbers: 02.30.Mv, 02.30.Tp, 02.60.Lj, 03.65.Db
Mathematics Subject Classification: 47B25, 47B50, 81Q10

1. Introduction

Let H0 be a Hilbert space with inner product 〈· , ·〉0 and let L be a non-negative self-adjoint
operator in H0. Denote by (Hl )

∞
l=−∞ the scale of Hilbert spaces associated with L and H0,

see [4]: Hl is the Hilbert space dom Ll/2 equipped with the norm ‖f ‖l = ‖(L + 1)l/2f ‖0,

and for l < 0,Hl is the completion of H0 with respect to the norm ‖·‖l . In a natural way
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Hl and H−l are duals and the inner product can be generalized to a pairing 〈f, g〉0 between
the spaces Hl and H−l : |〈f, g〉0| � ‖f ‖l‖g‖−l , f ∈ Hn, g ∈ H−l , and 〈g, f 〉0 = 〈f, g〉∗0.
For ±l, n = 1, 2, . . . , the operator (L + 1)−n/2 is an isometry from Hl to Hl+n. Finally,
Hl ↪→ Hn, l > n, and the inclusion map is contractive and has a dense range. In this paper
we consider the formal rank-1 singular perturbation

Lα ≡ Lα,ϕ = L + α〈· , ϕ〉0ϕ, (1.1)

where the generalized element ϕ is an element of the space H−k−1\H−k, k = 0, 1, . . . . If
k = −1, or, more generally, if ϕ ∈ H0 then perturbation (1.1) is called regular, otherwise it
is called singular. For the values k = 0, 1 perturbation (1.1) is singular, but admits a one-
parameter family of self-adjoint realizations inH0, see [1, 2] and references therein. In the case
k = 0 perturbation (1.1) can be treated as the generalized sum of L and the perturbation and the
parameter α plays the role of a coupling constant. However in the case k = 1 a realization Lg

of (1.1) is constructed indirectly via the Berezin–Faddeev ‘restriction-extension’ method [6],
where a true parameter g (renormalized coupling constant) distinguishing between different
self-adjoint realizations should be fixed by using auxiliary reasoning. According to the
renormalization point of view the parameter g is defined by a normalization condition with
respect to a point µ ∈ ρ(L). In [6] an approximation for the δ(x)-perturbation of the Laplacian
in R

3 by rank-1 perturbations was used as a reason for the choice of an appropriate parameter.
For approximations of H−1- and H−2- perturbations we refer to [1, 2].

In this paper we focus on approximations of high order singular perturbations, that is,
perturbations with k > 1. Then Lα is just a formal expression on H0 and the (one-parameter
family of) self-adjoint realizations, that is, operators or relations, are possible in inner product
spaces different from the original space. In the approach, initiated by Berezin [5], the inner
product is indefinite. Following this way in [8, 26, 27] a family of self-adjoint realizations of Lα

in a Pontryagin space with m = [
k
2

]
negative squares is described. For further developments

and applications we refer to [7, 11, 12, 17, 25]. A different approach for the realization
problem was proposed recently in [21, 22], where the possibility of a Hilbert space realization
was observed. A relation between these approaches was analysed in [9].

Here we follow the first approach and deal with realizations in a Pontryagin space.
According to [8, 11, 26] the realization depends in general on k real parameters (gs)

k
s=1; the

subset ḡ = {g2, . . . , g2m} describes the inner product in the Pontryagin space, which has the
structure �(ḡ) = H0 ⊕ C

m ⊕ C
m. The parameter g2m+1, when k is odd, plays a role in

the construction, and we denote ĝ = {g2, . . . , gk}. The parameter g ≡ g1 plays the role of
a coupling constant and for fixed parameters of ĝ marks the one-parameter family of self-
adjoint operators Hg(ĝ) realizing the formal perturbation (1.1). Similar to H−2-perturbations,
all these parameters are defined relative to a normalization point µ < 0. The complete
description of the realization is given in terms of the triple �(ḡ), S(ĝ),Hg(ĝ), where S(ĝ) is
a symmetric nondensely defined operator in �(ḡ), which is a kind of lifting of the restriction
L|f ∈Hk+1,〈f,ϕ〉0=0. The operators (the relation if g = ∞) Hg(ĝ), g ∈ R ∪ {∞} form the
one-parameter family of self-adjoint extensions of S(ĝ).

Thus, the realization scheme for high singular H−k−1-perturbations follows again the
‘restriction–extension’ method, but in the Pontryagin space �(ḡ). The function

Qk(z) =
〈

(z − µ)k

(L − z)(L − µ)k
ϕ, ϕ

〉
0

+
k−1∑
l=0

gj+1(z − µ)l (1.2)

is the key ingredient of these perturbations, which generalizes the Nevanlinna function Q1(z)

corresponding to k = 1 and appearing in H−2-perturbations. But Qk(z) with k > 1 is the
generalized Nevanlinna function from the class Nm, see [18–20].
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Approximation of high order singular perturbations was considered recently by Shvedov
in [28] in a class of operators, which are closely related with rank-1 perturbations of L. In
contrast to H−2-perturbation the approximation in [28] includes approximation of spaces.
The approximating spaces and operators there have the following description. The set
of parameters consists of k real numbers γ̂ = {γs}kk=1, γk �= 0. Denote γ̄ = {γs}kk=2.
Let K(γ̄ ) be the Pontryagin space K(γ̄ ) = H0 ⊕ C

k−1, equipped with the inner product
〈· , ·〉K(γ̄ ) = 〈· , (I0 ⊕Gγ )·〉H0⊕C

k−1 , where Gγ = (γij )
k−1
i,j=1 is a (k−1)× (k−1) upper triangle

Hankel matrix, whose entries γij have the properties γij = γi+j if i + j � k and γij = 0 if
i + j > k. For a fixed parameters from γ̄ a one-parameter family of self-adjoint operators
Aγ1(γ̄ ), γ1 ∈ R ∪ {∞}, in K(γ̄ ) is constructed. The operators A(γ̂ ) ≡ Aγ1(γ̄ ) are determined
by L and a vector ψ ∈ H0. Sequences of numbers γ (n)

s , s = 1, k, and elements ψ(n) from H0

are taken in such way that ψ(n) n→∞−→ ϕ in H−k−1 and

γ (n)
s + 〈(L − µ)−sψ(n), ψ(n)〉0

n→∞−→ gs. (1.3)

The spaces Kn ≡ K(γ̄ (n)) and operators An ≡ A(γ̂ (n)) are taken for the approximating
objects. In [28] it was proven that the sequence Kn strongly approximates the space �, for
z ∈ ρ(Hg(ĝ)) the sequence (An−z)−1 strongly approximates the resolvent (Hg(ḡ)−z)−1, and
the corresponding evolution operators Un(t) strongly approximates U(t) = eiHg(ĝ)t in the sense
of approximation with variable spaces, see [16] and for the Pontryagin space approximation
see [23, 24].

In this paper we investigate the approximation of high singular perturbation from a
different point of view following mainly Krein’s extension theory. This will allow us to apply
results to the approximation of singular boundary problems. Our aim is to interpret the above
mentioned Shvedov approximating model, but here we use generalized elements ψ ∈ H−2

rather than vectors of H0, in terms of the extension theory ingredients and compare it with the
previous realization. Particularly, we associate with such model the function

Q1k(z) =
〈

(z − µ)

(L − z)(L − µ)
ψ,ψ

〉
0

+
k−1∑
l=0

γl+1(z − µ)k. (1.4)

If γk < 0,Q1k(z) and Qk(z) are generalized Nevanlinna functions from the class Nm, and
they both have only at infinity a generalized pole of nonpositive type and multiplicity m
[20]. We observe that under conditions (1.3) the sequence {Q1k(z)|γ̂ = γ̂ (n)} converges to
Qk(z) uniformly on compact subsets in C\R

+. Therefore we treat the function Q1k(z) as
an approximant of the function Qk(z). From this point the approximation of high singular
perturbation looks like the approximation of an operator representation of the generalized
Nevanlinna function Qk(z) by representations of the function Q1k(z).

Besides this introduction, there are three sections. In section 2 we describe approximations
of generalized Nevanlinna functions, associated with high singular perturbations, and the
corresponding models. In section 3 the approximations of high singular perturbations are
considered. An example and an application to a boundary value problem for the Bessel
equation are analysed in section 4.

2. Approximations of generalized Nevanlinna functions and models

2.1. Preliminary

We recall some notions and facts from the extension theory of symmetric operators in
Pontryagin spaces; for more details we refer to [3, 13, 14, 18–20]. Let S be a symmetric
(not necessarily densely defined) operator with defect indices (1, 1) in a Pontryagin space
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K, 〈· , ·〉, and let A be a self-adjoint extension of S in K; A can be an operator or a linear
relation with a nonempty resolvent set ρ(A). A linear relation A is a linear manifold in
K2 ≡ K ⊕ K. Through dom A and ran A we denote the domain and the range of A which
are defined in a natural way. The set A(0) = {f ∈ K | {0, f } ∈ A} is called the multivalued
part of A; A is the graph of an operator if and only if A(0) = 0. We identify an operator
B with its graph {{f,Bf } | f ∈ domB}. The adjoint to a linear relation A is defined as
A∗ = {{h, h′} ∈ K2 | 〈h′, f 〉 = 〈h, f ′〉for all{f, f ′} ∈ A}. The linear relation A = A∗ is
called self-adjoint. The inverse linear relation is given by A−1 = {{f, f ′} ∈ K2 | {f ′, f } ∈ A}.
A point z belongs to the resolvent set ρ(A) of A if (A−z)−1 is the graph of a bounded operator
in K, see [3, 13].

A defect function ϕ(z) for S and A is a holomorphic function on ρ(A) with values in K
and the properties ϕ(z) ∈ ker(S∗ − z) and

ϕ(z) − ϕ(ζ ) = (z − ζ )(A − z)−1ϕ(ζ ), z, ζ ∈ ρ(A). (2.1)

Then the Q-function for S and A is a holomorphic function N(z) on ρ(A) which satisfies the
relation

N(z) = N(z∗
0) + (z − z∗

0)〈ϕ(z), ϕ(z0)〉, z, z0 ∈ ρ(A), (2.2)

in particular, N(z)∗ = N(z∗), z ∈ ρ(A). This function is uniquely defined up to a real
constant. If z0 ∈ ρ(A) is fixed (2.2) describes an operator representation of N(z).

If K has κ negative squares and the minimality condition K = span{ϕ(z)|z ∈ ρ(A)}
is satisfied, it belongs to the class Nκ of generalized Nevanlinna functions with κ negative
squares. Recall that Nκ is the set of all functions N(z) which are defined and meromorphic in
C

+ ∪C
− such that N(z)∗ = N(z∗) and the kernel N(z)−N(ζ)∗

z−ζ ∗ with z, ζ belonging to the domain
of the holomorphy ρ(N) of N(z), has κ negative squares. If κ = 0, the class N0 consists of
all Nevanlinna functions.

Also, conversely, each function N(z) ∈ Nκ which is not a real constant is a Q-function for
a symmetric operator S in some Pontryagin space K and a self-adjoint extension A of S, which
are uniquely determined up to unitary equivalence if the minimality condition is satisfied.
Namely for the self-adjoint relation A in its operator representation and the symmetric relation

S = {{f, f ′} ∈ A|〈(f ′ − z∗
0f ), ϕ(z0)〉 = 0}.

The minimality also implies that K has κ negative squares and ρ(A) = ρ(N). If N(z) ∈ Nκ

is a Q-function for S and A in K and the minimality condition holds then S is a densely defined
symmetric operator if and only if N(z) has the properties

(a) lim
y→+∞ y Im N(iy) = +∞, (b) lim

y→∞ y−1N(iy) = 0. (2.3)

Let S be a closed symmetric relation with defect indices (1, 1) in a Pontryagin space K, A

be a fixed self-adjoint extension of S in K and let ϕ(z) be a defect function and Q(z) be a
Q-function for S and A. Then the following Krein formula establishes a bijective
correspondence between the resolvents of all self-adjoint extensions Ã of S in K (canonical
extensions) and the real numbers τ ∈ R ∪ {∞} [18, 19]:

(Ã − z)−1 = (A − z)−1 − 〈· , ϕ(z∗)〉
Q(z) + τ

ϕ(z), z ∈ ρ(A) ∩ ρ((Q + τ)−1). (2.4)

This formula enables a parametrization Ã = Aτ of the extensions such that A∞ = A.
In this paper we meet generalized Nevanlinna functions of two different types. The

functions of the first type appear in the framework of high order singular perturbations; they
are holomorphic in C\R and admit the irreducible representation

N(z) = (z − µ)2mN0(z) + p2m−1(z), (2.5)
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where N0(z) is a Nevanlinna function holomorphic on C\R
+ and satisfying (2.3) and p2m−1(z)

is a polynomial of degree � 2m − 1 with real coefficients. This N(z) belongs to the class
Nm. Particularly, Qk(z) (1.2) is such a function. The functions of the second type appear as
a Q-functions of smooth approximating models; they are also holomorphic in C\R and admit
the representation

N(z) = N0(z) + pk−1(z), (2.6)

where N0(z) is a Nevanlinna function C\R
+ and pk−1(z) is a polynomial of degree k − 1 with

real coefficients. This N(z) belongs to the class Nκ . After the normalization ReN0(z0) = 0 at
a point z0 ∈ ρ(L) (2.6) becomes an irreducible representation, i.e. unique. The number κ is
given in terms of the leading coefficient of pk−1(z), say pk−1, by the formula [19, lemma 3.3]

κ =
{[

k−1
2

]
if k even and pk−1 > 0,[

k
2

]
otherwise.

(2.7)

The function Q1k(z) (1.4) is an example of such a function.

2.2. Approximation of generalized Nevanlinna functions

For clarity we list briefly some of the results concerning perturbation (1.1) for the values of
k = −1, 0, 1; see [2, 29].

(i) If k = −1, or, more generally, ϕ ∈ H0, Lα is a self-adjoint operator in H0 with
dom Lα = dom L, since it is a rank-1 perturbation.

(ii) If k = 0, the perturbation α〈· , ϕ〉ϕ is relatively form bounded with respect to the
sesquilinear form of the operator L and the perturbed operator Lα can be determined
either by using the form perturbation method, or as the generalized sum of L and the
perturbation, see [2, 29].
In both cases (i) and (ii) the resolvent of Lα is given by the same formula which is of the
form (2.4) with the substitutions A = L ≡ L0, Ã = Lα, τ = 1

α
and

Q(z) =
〈

1

L − z
ϕ, ϕ

〉
, ϕ(z) = (L − z)−1ϕ.

(iii) In the case k = 1 perturbation (1.1) should be treated through the extension theory. The
restriction Lmin = L|{u∈Hk+1∩domL|〈u,ϕ〉=0} with k = 1 is a symmetric operator in H0 with
defect indices (1, 1). The perturbed operator is no longer uniquely defined. It is now
interpreted as a self-adjoint extension of Lmin. These extensions can be parametrized by
one real parameter g ∈ R ∪ {∞} either according to Krein’s formula (2.4), identifying
there A = L, Ã = Lg, z0 = µ < 0, τ = g, and the Q-function with

Q1(z) :=
〈

z − µ

(L − z)(L − µ)
ϕ, ϕ

〉
,

or as an appropriate restriction of L∗
min. Here µ < 0 is considered as a fixed

point normalization; changing µ corresponds to changing the parameter g. In this
way a one-parameter family of self-adjoint realizations Lg in H0 for the formal
expression (1.1) is obtained. Note that both functions Q(z) and Q1(z) are Nevanlinna
functions holomorphic in C\R

+; furthermore, in the singular cases (ii) and (iii) the
functions Q(z) and Q1(z) are specified by the asymptotic behaviour (2.3) along the
imaginary axes, whereas in the case (i) of regular perturbations limy→+∞ y Im Q(iy) <

+∞ and limy→∞ y−1Q(iy) = 0. The asymptotic behaviour along the negative
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half-axes of these functions in the cases (i), (ii) and (iii) is specified as follows
[15, 29]:

(i) lim
x→−∞ Q(x) = 0, lim

x→−∞ xQ(x) = −‖ϕ‖0 if ϕ ∈ H0;
(ii) lim

x→−∞ Q(x) = 0, lim
x→−∞ xQ(x) = −∞ if ϕ ∈ H−∞\H′;

(iii) lim
x→−∞ Q1(x) = −∞, lim

x→−∞
1
x
Q1(x) = 0 if ϕ ∈ H−2\H−1.

(2.8)

In case (iii) the relation between the parameter g in Lg and the coupling parameter
α in (1.1) cannot be established without additional assumptions. Let us consider how the
function Q(z) + α−1 is transformed into Q1(z) + g from the approximation point of view,
when ϕ ∈ H−2\H−1 is approximated by a sequence of ψ(n) ∈ H0. For ψ ∈ H0, µ < 0 and
q(z, ψ) := 〈(L − z)−1ψ,ψ〉0 we define

qr
1(z, ψ) := q(z, ψ) − q(µ,ψ) =

〈
(z − µ)

(L − z)(L − µ)
ψ,ψ

〉
0

.

It is clear that qr
1(z, ψ) considered as a quadratic form in ψ is continuous with respect to

‖·‖−2-norm. Evidently, q(z, ψ) + α−1 = qr
1(z, ψ) + q(µ,ψ) + α−1. Consider a sequence

ψ(n) ∈ H0 approximating ϕ in H−2 and a sequence of real numbers α(n) satisfying the
condition q(µ,ψ(n)) + (α(n))−1 n→∞−→ g. By continuity the sequence qr

1(z, ψ
(n)) converges to

qr
1(z, ϕ) = Q1(z) for z ∈ ρ(L), and, therefore the sequence q(z, ψn) + (α(n))−1 approximates

the function Q1(z) + g. Also, the sequence Lα(n) approximates the Lq in the strong resolvent
sense [2, theorem 1.4.4].

If k � 2 the restriction Lmin of L above is essentially self-adjoint in H0 and its closure
coincides with L. We analyse what happens with the function q(z, ψ), when ψ = ψ(n) ∈ H0

and the sequence ψ(n) approximates ϕ ∈ H−k−1\H−k , and also a generalization of such an
approximation. For ψ ∈ H0, µ < 0, and q(z, ψ) as above we define for l = 0, 1, 2, . . . the
functions qr

l (z, ψ) by the rule qr
0(z, ψ) ≡ q(z, ψ) and

qr
l (z, ψ) := q(z, ψ) −

l−1∑
j=0

(z − µ)s

s!

ds

dzs
q(z, ψ)|z=µ =

〈
(z − µ)l

(L − z)(L − µ)l
ψ,ψ

〉
0

,

when l = 1, 2, . . . , and call qr
l (z, ψ) the l-regularization of q(z, ψ), as it is continuous in ψ

relative to ‖·‖−l−1-norm. Let ϕ ∈ H−k−1\H−k,m = [
k
2

]
, and

Q0(z) := (z − µ)−2mqr
k (z, ϕ) =

〈
(z − µ)k−2m

(L − z)(L − µ)k
ϕ, ϕ

〉
0

.

Lemma 2.1. The function Q0(z) is a Nevanlinna function having the asymptotic behaviour
(2.3) and its asymptotic behaviour along the negative half-axis is given by

(a1) lim
x→−∞ xQ0(x) = −∞, (b1) lim

x→−∞ Q0(x) =
{

0 if k = 2m,

−∞ if k = 2m + 1.
(2.9)

The proof is obtained applying the results of (2.8) (ii) and (iii).

Corollary 2.2. The function Qk(z) in (1.2) admits the irreducible representation (2.5) with
the function

N0(z) = Q0(z)(k = 2m), N0(z) = Q0(z) + gk(k = 2m + 1). (2.10)

Particularly, Qk(z) ∈ Nm.
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Assume ψ ∈ H−l−1, l = 0, 1, . . . , k − 1, and consider the functions

Qlk(z) = qlk(z, ψ) := qr
l (z, ψ) +

k−1∑
s=0

γs+1(z − µ)s, (2.11)

where the γs are real numbers. These Qlk(z) are generalized Nevanlinna functions
holomorphic in ρ(L). Also for a given set of real numbers (gs)

k
s=1 we consider sequences

of real numbers
(
γ (n)

s

)k

s=1 and elements ψ(n) ∈ H−l−1 satisfying the conditions

γ (n)
s

n→∞−→ gs if s � l,

γ (n)
s + 〈(L − µ)−sψ(n), ψ(n)〉0

n→∞−→ gs if l < s � k.
(2.12)

Proposition 2.3. Let a sequence ψ(n) ∈ H−l−1, l � k, approximate ϕ ∈ H−k−1\H−k in
H−k−1, and a sequence of real numbers γ (n)

s , s = 1, k, satisfy the asymptotic conditions
(2.12). Then for z ∈ ρ(L) and the function Qk(z) given by (1.2)

lim
n→∞ qlk(z, ψ

(n))
∣∣
γs=γ

(n)
s

= Qk(z).

Proof. Let z ∈ ρ(L) and l � k. Using the definition of the l- and k-regularizations of q(z, ψ)

and the equalities 1
s!

ds

dzs q(z, ψ)|z=µ = 〈(L − µ)−s−1ψ,ψ〉0 we can write

qr
l (z, ψ) = qr

k (z, ψ) +
k−1∑
s=l

(z − µ)s
〈

1

(L − µ)s+1
ψ,ψ

〉
0

.

Inserting this formula into (2.11) we obtain that the function qlk(z, ψ) is the sum of qr
k (z, ψ)

and the polynomial

p(z) =
l−1∑
s=0

γs+1(z − µ)s +
k−1∑
s=l

(
γs+1 +

〈
1

(L − µ)s+1
ψ,ψ

〉
0

)
(z − µ)s.

qr
k (z, ψ) is continuous in ψ with respect to the norm ‖·‖−k−1 and

lim
n→∞ qr

k (z, ψ
(n)) =

〈
(z − µ)k

(L − z)(L − µ)k
ϕ, ϕ

〉
0

.

By the asymptotic conditions (2.12) the coefficients ps of polynomials after substitution
ψ = ψ(n) and γs = γ (n)

s converge to the numbers gs+1. Hence the convergence

qlk(z, ψ
(n))

n→∞−→ Qk(z) follows. �

2.3. Realization of high order singular perturbation. m–model

Let L � 0 be a non-negative operator in a Hilbert space, ϕ ∈ H−k−1\H−k , k > 1, and
m = [

k
2

]
. We describe shortly the operator realization of the formal singular perturbations

(1.1) of L following mainly [8, 26, 27] and with slight changes due to the positivity of L
[9, 12]. The realization depends in a generic way on k real parameters, which are specified
relative to a normalization point from the resolvent set of L. We take µ ∈ R

− for the
normalization point and a set of parameters g = (gs)

k
s=1. Denote by ĝ and ḡ the subsets

ĝ = (gs)
k−1
s=1 and ḡ = (gs)

2m
s=2 and set g ≡ g1 for the parameter g1 playing the role of a

renormalized coupling. Sometimes we shall omit indicating irrelevant parameters. In the
description below we associate with L and ϕ a self-adjoint relation H∞ in a Pontryagin space
� and consider a suitable one-dimensional restriction S of H∞. The realization of (1.1) is
then represented by the family of all canonical self-adjoint extensions Hg of S.
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Define the elements ϕj := (L − µ)−jϕ ∈ H2j−k−1\H2j−k, j = 1, k − 1. The Pontryagin
space �(ḡ) with m negative squares is defined as the space �(ḡ) = H0 ⊕ C

m ⊕ C
m,

whose elements are vectors F = (f, a, b) , f ∈ H0, a, b ∈ C
m, and the inner product

〈· , ·〉 = 〈· , G·〉H0⊕C
m⊕C

m is given by the Gram operator

G = I0 ⊕
(

0 Im

Im G

)
, G = (gij )

m
i,j=1, gij := gi+j . (2.13)

Here I0, Im are the identity operators in H0 and C
m respectively. Hence the inner product is

parametrized by the numbers (gs)
2m
s=2 of the subset ḡ. Note that G in (2.13) is a Hankel matrix.

We assume that the parameters from ĝ are fixed, set � ≡ �(ḡ) and R0(z) = (L − z)−1,
and write ej for the j th unit vector in C

m, j = 1,m. Then H∞ is the linear relation

H∞ = {(h + bm+1ϕm+1, a, b), (Lh + µbm+1ϕm+1, a′, b′)},

a′ = (µa1 + a0) e1 +
m∑

j=2

(µaj + aj−1 − gm+j bm+1) ej , b′ =
m∑

j=1

(µbj + bj+1)ej ,

h ∈ dom L, b1 = 0, (bi)
m+1
i=2 , (aj )

m−1
j=0 ∈ C

m, am = 〈h, ϕm〉 + ĝ2m+1bm+1,

where ĝ2m+1 = g2m+1 if k = 2m + 1 and ĝ2m+1 = 〈
R2m+1

0 (µ)ϕ, ϕ
〉
0 if k = 2m. Hence H∞

is a self-adjoint linear relation in � and its multivalued part is the subspace H∞(0) =
{c(0, e1, 0), c ∈ C} . It holds that ρ(H∞) = ρ(L), σ(H∞) = σ(L) ∪ {∞} and the
compression of the resolvent (H∞ − z)−1 to H0 coincides with the resolvent (L − z)−1.
In this sense the relation H∞ is a ‘lifting’ of L from H0 to �. Note ([11]) that the neutral
subspace L = 0 ⊕ C

m ⊕ 0 of � is the root space of H∞ at ∞; therefore, z = ∞ is a
singular critical point of H∞. From the description we see that H∞ = H∞(ĝ) depends on
the parameters g2, . . . , gk of ĝ.

We choose two vectors u = (0, 0, e1) and w = (0, e1, 0) in �. The symmetric operator
S is chosen such that the defect subspace ker(S∗ − µ) = ran(S − µ)⊥ is spanned by the
vector u. Hence S and its adjoint S∗ in �m(ḡ) are given by

S = H∞ ∩ {{u,µu}}∗, S∗ = H∞ .
+ span{{u,µu}}.

For z ∈ ρ(L) the vector function (z) := (I + (z − µ)R∞(z))u ∈ ker(S∗ − z) and satisfies
(2.1); therefore, it is a defect function for S and H∞. Explicitly,

(z) =
(z − µ)mR0(z)ϕm,

m∑
j=1

(z − µ)mdj (z)ej ,

m∑
j=1

(z − µ)j−1 ej

 ,

dj (z) = (z − µ)k−m−j 〈R0(z)ϕm, ϕk−m〉0 +
k−m−j∑

l=1

(z − µ)l−1gm+j+l .

By definition the Q-function Q(z) associated with S and H∞ in � is determined by the
defect function (z) according to formula (2.2) with substitutions ϕ(z) = (z) and z0 = µ.
We require the normalization Q(µ) = g1(≡g) and obtain that Q(z) is expressed by formula
(1.2), i.e. Q(z) = Qk(z). By corollary 2.2 Q(z) ∈ Nm and also admits representation (2.5)
with the Nevanlinna function N0(z) (2.10).

The operators Hg ≡ Hg(ĝ), g ∈ R are defined as the canonical self-adjoint extensions
of the symmetric operator S and they are restrictions of S∗ in �

Hg = S
.
+ span{u,µu − (g + Qk(µ))w}. (2.14)

The parameter g ∈ R ∪ {∞} distinguishes between the distinct canonical self-adjoint
extensions of S, and every canonical self-adjoint extension of S coincides with one of
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the Hg . Among them only H∞ is the multivalued extension. The family of extensions
Hg, g ∈ R ∪ {∞}, is by definition the realization of the formal expression (1.1) in �. For
complete parametrization we write Hg(ĝ) for them.

Krein’s formula (2.4) applied to the resolvent of Hg takes the form

(Hg − z)−1 = (H∞ − z)−1 − 〈· ,(z∗)〉
Qk(z)

(z), z ∈ ρ(L) ∩ ρ(Hg). (2.15)

2.4. Auxiliary (1k)-model

Here we describe a model associated with the function Q1k(z) (1.4), which can be used later
as an approximating model (approximant) for the previous m-model of high order singular
perturbations. We assume L is a non-negative operator in H0 as above, ψ ∈ H−2\H0, and
µ < 0. Define the vector-function ψ(z) = (L − z)−1ψ and elements ψs = (L − µ)−sψ, s =
1, k − 1. As was mentioned, Q1k(z) is a particular case of functions (2.6) with concrete
Nevanlinna function N0(z) = (z − µ)〈ψ(z), ψ1(µ)〉0 satisfying (2.3) and normalized by
N0(µ) = 0. Therefore Q1k(z) ∈ Nκ with κ determined by γk through (2.7). Our aim is to
construct an operator model for the function Q1k(z) in the sense of representation (2.2), i.e. it
is needed to find a symmetric operator S and its self-adjoint extension in a Pontryagin space
K for which Q1k(z) is a Q-function, and then reconstruct the whole family of self-adjoint
extensions of S. The (1k)-model below is a solution which is used later for approximations.

Consider a set of real numbers γ̂ = {γs}kk=1, γk �= 0, separate γ ≡ γ1 and denote
γ̄ = {γs}kk=2. Let K be the space K = H0 ⊕ C

k−1, equipped with the inner product
〈· , ·〉K = 〈· , (I0 ⊕ Gγ )·〉H0⊕C

k−1 , where Gγ = (γij )
k−1
i,j=1 is the (k − 1) × (k − 1) upper

triangle Hankel matrix with elements γij satisfying γij = γi+j if i + j � k, and γij = 0 if
i+j > k. Gγ has a triangle structure with zeros under the antidiagonal and nonzero determinant
det Gγ = (−1)[k−1/2]γ k−1

k . The number κ of negative squares of the inner product coincides
with the number of negative eigenvalues of Gγ and is determined by the formula (2.7) with
the identification pk−1 = γk . Hence K is a Pontryagin space. Writing the elements of K as
F = (f, c1, . . . , ck−1) we introduce the vectors û = (ψ1(µ), e1), ûj = (0, ej ), j = 1, k − 1,
and û′ = (µψ1(µ), 0, 0). Consider in K the operator S given by

dom S =
{

(f, c) ∈ K|f ∈ dom L, c1 = 0, cj ∈ C, j = 2, k − 1,

γkck = −〈h,ψ〉0 −
k−1∑
j=2

γjcj

}
S(f, c) = (Lf, c′), c′

s = cs+1 + µcs, s = 1, k − 1.

(2.16)

As L is closed and the functional 〈· , ψ〉0 is bounded on dom LS is a closed non-densely
defined symmetric operator. The subspace (ran(S − µ))⊥ is spanned by the vector û; hence S
has defect indices (1, 1). Among the self-adjoint extensions of S there is one A∞ which is a
linear relation with nontrivial multivalued part A∞(0) = {(0, c ek−1), c ∈ C}:
dom A∞ = {

(f, c) ∈ K|f ∈ dom L, c1 = 0, (cj )
k
j=2 ∈ C

k−1
}
,

A∞ = {{(f, c), (Lf, c′)}, c′
s = cs+1 + µcs, s = 1, k − 1, c′

k ∈ C}. (2.17)

After an easy calculation we obtain its resolvent

(A∞ − z)−1(f, c) = (R0(z)f, c′), c′
s =

s−1∑
i=1

cs−i (z − µ)i−1, s = 1, k − 1. (2.18)
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It is seen from the last formula that ρ(A∞) = ρ(L), σ(A∞) = σ(L) ∪ {∞} and the
compression of the resolvent (A∞ − z)−1 to H0 coincides with (L − z)−1. Hence the linear
relation A∞ is a lifting of L from H0 to K similar to the relation H∞ in subsection 2.4. Note
([10]) that the nondegenerate subspace L = 0 ⊕ C

k−1 of K is the root space of A∞ at ∞;
therefore, z = ∞ is a regular critical point of A∞. S is a one-dimensional restriction of A∞:
S = {{f, f ′} ∈ A∞ | 〈f ′ −µf, û〉K = 0}. All self-adjoint extensions of S, which are operators
in K, can be identified with the following linear relation:

Aγ = S
.
+ span{̂u, û′ − γ ûk−1}. (2.19)

For the defect function �(z) := û + (z−µ)(A∞ − z)−1û of S and A∞ a short calculation with
(2.17) leads to the formula

�(z) = (ψ(z), 1, (z − µ), . . . , (z − µ)k−2),

which yields the equality (z − µ)〈�(z),�(µ)〉K + γ1 = Q1k(z). Therefore, the function
Q1k(z) (1.4) is a Q-function for S and A∞. With these functions the following formula
specifies Krein’s formula (2.4) for this model:

(Aγ − z)−1 = (A∞ − z)−1 − 〈· , �(z∗)〉
Q1k(z)

�(z), γ1 = γ. (2.20)

Indicating the dependence on parameters we will write K(γ̄ ), S(γ̄ ) and Aγ (γ̄ ). Thus the
(1k)-model, which is given by the triple K(γ̄ ), S(γ̄ ), Aγ (γ̄ ), γ ∈ R ∪ {∞} with the described
constituents, solves the problem we asked at the beginning of the subsection. We will take in
section 3 the operators (linear relation if γ = ∞) Aγ (γ̄ ) as approximant for the m-model.

Note that minimal models of the generalized Nevanlinna functions of the form (2.6)
and more general functions with generalized pole at infinity were described in [10] in the
framework of rank-1 perturbations in the Pontryagin space. In the model described above we
followed in the opposite way and reconstructed a model in the Pontryagin space by data L,ψ

associated with a smaller Hilbert space; also we do not require the minimality condition.

2.5. A relation between the models

For the given real numbers γs, s = 2, k and the triple H0, L,ψ as above define the numbers
gs by

gs := γs +
〈
Rs

0(µ)ψ,ψ
〉
0, s = 2, 3, . . . , k, (2.21)

and consider the Ponrtyagin space �(ḡ), introduced in subsection 2.3, parametrized now by
these numbers gs . The following mapping V : K(γ̄ ) → �(ḡ) was proposed in [28] (there it
was denoted by Q):

V (f, c) = (h, a, b) : h = f − ∑m
j=1 cjψj ,

aj = 〈h,ψj 〉0 +
k−j∑

l=m+1

γl+j cl, bj = cj , j = 1,m.
(2.22)

Denote R(V ) = ran V . Properties of V depend on k = 2m or k = 2m + 1. In the case
k = 2m we consider the vector v = (−Rm

0 (µ)ψ,−∑m
j=1 gj+mej , em

)
in �(ḡ) and denote

V = {cv, c ∈ C}. A simple calculation yields

〈v, v〉�(ḡ) = 〈
R2m

0 (µ)ψ,ψ
〉
0 − g2m = −γ2m �= 0. (2.23)

Therefore if k = 2m, V is a nondegenerate subspace.
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Lemma 2.4. Let the sets of parameters γ̄ and ḡ be related as in (2.21). Then V maps K(γ̄ )

isometrically in �(ḡ) and V is surjective if k = 2m + 1, but (ranV )⊥ = V is a nondegenerate
one-dimensional subspace if k = 2m. In the last case

�(ḡ) = R(V ) ⊕ V. (2.24)

Proof. That V is isometric under relation (2.21) can be checked by a calculation. When
k = 2m + 1 dim C

k−1 = dim C
m ⊕ C

m and the mapping in (2.22) is isomorphism. But in the
case k = 2m this is not true. We prove that R(V )⊥ = V . Assume the orthogonality condition
〈V (h, c), (f, a, b)〉�(ḡ) = 0 for arbitrary (h, c) ∈ K(γ̄ ). It is equivalent to the equations

f + bmRm
0 (µ)ψ = 0, bj = 0, j = 1,m − 1, aj + gj+mbm = 0, j = 1,m.

Hence R(V )⊥ coincides with the subspace V . As V is nondegenerate �(ḡ) admits the
orthogonal decomposition (2.24). �

Thus for k = 2m + 1, V is a unitary mapping and for k = 2m,V is an isometry such that
V = ker V ∗ of the adjoint mapping V ∗ : �(ḡ) → K(γ̄ ), which is surjective and is a partial
isometry if k = 2m.

The mapping V and relations (2.21) allow us to get a correspondence between the first
m-model Hg(ḡ) in �(ḡ) determined by the triple H0, L, ϕ and the second (1k)-model
Aγ (γ̄ ) in K(γ̄ ) determined by the triple H0, L,ψ . Observe that in the basic quantities of
subsection 2.3 for (H∞ − z)−1,(z) and (Hg − z)−1 we are able to change ϕ ∈ H−k−1\H−k

to ψ ∈ H−2\H0. After making this substitution we denote the resulting expressions for these
quantities correspondingly by R̃∞(z), ̃(z) and R̃g(z). Note that in the case k = 2m

R̃∞(z)V = 0, R̃g(z)V = 0 and 〈̃(z), v〉 = 0. (2.25)

Theorem 2.5. Under relation (2.21) between the parameters from the sets γ̄ and ĝ and
z ∈ ρ(L) ∪ {z | Qk(z) �= 0}, the following relations hold:

V (A∞ − z)−1 = R̃∞(z)V, V (Ag − z)−1 = R̃g(z)V, V �(z) = ̃(z).

A similar result for the second relation was proved in [28, lemma 3.7], where the operator
function R̃g(z) was defined by a linear system. Our proof is based on a calculus with linear
relations. We describe here only the basic idea of the proof, and omit calculations, as they are
beyond the scope of this paper. Details will be published elsewhere.

The observation is that after the changing of ϕ to the smoother ψ in the m-model
instead of the self-adjoint operators Hg, g ∈ R we obtain self-adjoint linear relations
H̃ g ≡ {Hg|ϕ → ψ}. H̃ g is an operator if k = 2m + 1, but in the case k = 2m it is
not an operator and has the one-dimensional multivalued part {0,V} independently of g.
Similarly for g = ∞ we obtain the linear relation H̃∞ ≡ {H∞|ϕ → ψ} whose multivalued
part is one dimensional if k = 2m + 1, but in the case k = 2m this is a two-dimensional
subspace {0, span{v,w}} generated by the vectors v and w = (0, e1, 0). The operator-function
R̃g(z), g ∈ R ∪ {∞} is just the resolvent of the linear relation of H̃ g . This explains property
(2.25). Next, by an algebraic calculation we check that {V F, V F ′} ∈ H̃ g if {F,F ′} ∈ Aγ and
relations (2.21) between the sets γ̂ and ĝ are satisfied. Then the third relation V �(z) = ̃(z)

follows according to the first equality of theorem 2.5 and the simple equality u = V û from
the definitions of (z) and �(z) in subsections 2.3 and 2.4.
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3. Approximation of high order singular perturbations

We follow the definitions of [16] and [23, 24]. Let H and Hn, n = 1, 2, . . . , be
Hilbert spaces, Pn linear mappings from H onto Hn. The spaces Hn approximate H
if ‖Pnu‖n → ‖u‖, for all u ∈ H. The sequence {un}, un ∈ Hn, strongly approximates
u ∈ H : un

s→ u, if ‖un − Pnu‖n → 0, when n → ∞. If Bn,B are bounded linear operators
in Hn,H, then Bn strongly approximates B: Bn

s→ B, if BnPnu
s→ Bu holds for each u ∈ H.

The sequence {Bn} weakly approximates B: Bn
w→ B, if 〈BnPnu, Pnv〉n → 〈Bu, v〉. If D is a

dense linear manifold in H and Pn are mappings from D onto Hn, then Hn approximates H if
and only if Pn are uniformly bounded and 〈Pnu, Pnv〉n → 〈u, v〉.

Let Hn,H be Hilbert spaces, Pn be mappings from H into Hn such that Hn approximates
H. If Jn, J are bounded and boundedly invertible self-adjoint operators in Hn and H such that
Kn = (Hn, Jn), K = (H, J ) are Krein spaces and Jn

w→ J then one says that Kn approximates
K. The approximation is called stable if, additionally, sup

∥∥J−1
n

∥∥
n

< ∞. The following
statement holds in the case of Pontryagin spaces [23, 24]: let Kn,K be Pontryagin spaces, D
be a dense linear manifold in K and Pn be linear mappings from D onto Kn such that Pn are
uniformly bounded and

(i) ind Kn = ind K < ∞, (ii) lim
n→∞〈Pnu, Pnv〉n = 〈u, v〉, u, v ∈ D.

Then Kn stably approximates K.
We assume L in H0, the realizations Hg in Pontryagin space �(ḡ) of high order singular

perturbation and a sequence ψ(n) ∈ H−2\H0, which approximates in H−k−1 the element
ϕ ∈ H−k−1\H−k , are given. The problem is to find sequences of Pontryagin spaces Kn,
mappings Pn : �(ḡ) → Kn and self-adjoint operators An in Kn such that the sequence Kn

would approximate �(ḡ) and the sequence of resolvents of An would strongly approximate
the resolvent of Hg(ĝ). We will solve this problem taking for Kn, An appropriate spaces and
operators of the (1k)-model.

First, we substitute into ingredients of the (1k)-model the variable data ψ(n),
(
γ (n)

s

)k

s=2
numbering n = 1, 2, . . . instead of the fixed data ψ, (γs)

k
s=2. Denote the variable objects

induced by these substitutions as Kn = K(γ̄ (n)), A
γ
n = Aγ (γ̄ (n)), �n(z). Then we consider

the sequence of numbers g(n)
s given by

g(n)
s = γ (n)

s +
〈
Rs

0(µ)ψ(n), ψ(n)
〉
0, s = 2, k, (3.1)

and assume that the finite limits limn→∞ g(n)
s = gs exist, when ψ(n) n→∞−→ ϕ. This is equivalent

to condition (2.12) with l = 1. Introduce the intermediate Pontryagin spaces �n ≡ �(ḡ(n))

which were obtained from the space �(ḡ) after changing gs → g(n)
s , s = 2, k and ϕ → ψ(n),

and define the inclusion mappings jn : �(ḡ) → �n, which map �(ḡ) � f → f ∈ �n

and then take the limit n → ∞. It is clear that the mappings jn are bounded and boundedly
invertible and satisfy the estimate

〈 jnF, jnF ′〉�n
= 〈F,F ′〉� + O(d(ḡ(n), ḡ)), for all F,F ′ ∈ �, (3.2)

where d(ḡ, ḡ′) = max2�s�2m |gs − g′
s |. Also we define mappings Vn : Kn → �n, vectors vn,

and subspaces Vn as variable versions of the mapping V (2.22), the vector v, and the subspace
V , which were obtained after substitution of the above variable data. According to lemma 2.4
each Vn is a unitary mapping if k = 2m + 1, but R(Vn)

⊥ = Vn if k = 2m. Also decomposition
(2.24) holds for each n: �n = R(Vn) ⊕ Vn.

Similarly we define the variable operator functions R̃n
∞(z), R̃n

g(z), and vector
functions ̃n(z) by substitution into the corresponding R̃∞(z), R̃g(z), ̃(z) variable quantities
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ψ = ψ(n), gs = g(n)
s , s = 2, k assuming relations (3.1) are satisfied. Then by theorem 2.5 the

equalities

Vn

(
A∞

n − z
)−1 = R̃n

∞(z)Vn, Vn

(
Ag

n − z
)−1 = R̃n

g(z)Vn, Vn�n = ̃n (3.3)

hold. Define the mappings Pn : �(ḡ) → Kn by the equalities Pn = V ∗
n jn. If k = 2m,Pn has

nontrivial kerPn = j−1
n Vn. Note that this definition differs from the definition of the mappings

Pn in [28].
The following limit equality holds:

lim
n→∞〈PnF, PnF

′〉Kn
= 〈F,F ′〉, for all F,F ′ ∈ �(ḡ). (3.4)

We prove the last equality. For k = 2m + 1 Pn = V ∗
n jn and V ∗

n is a unitary mapping;
convergence (3.4) follows immediately from estimate (3.2). Let k = 2m. We have

〈PnF, PnF
′〉Kn

= 〈
V ∗

n PR(Vn)jnF, V ∗
n PR(Vn)jnF

′〉 = 〈
PR(Vn)jnF, jnF ′〉.

According to (3.1) and the assumption about the sequences g(n)
s and ψ(n)γ

(n)
2m → ∞, when

n → ∞. Also for large γ
(n)
2m the estimate〈

PR(Vn)Fn, F
′
n

〉
�n

= 〈Fn, F
′
n〉�n

+ O
(
1
/
γ

(n)
2m

)
(3.5)

holds as a consequence of (2.23). These facts and the estimate (3.2) yield the limit

lim
n→∞

〈
PR(Vn)jnF, jnF ′〉

�n
= 〈F,F ′〉.

This proves the claim.
Consider a canonical decomposition �(ḡ) = �+ ⊕ �−, where �− is an m-dimensional

negative subspace, and define the norm in �(ḡ) as the Hilbert norm on this decomposition. By
assumption γ

(n)
k +

〈
Rk

0(µ)ψ(n), ψ(n)
〉
0

n→∞−→ gk; hence γ
(n)
k < 0 for large enough n. For these

n the negative index ind Kn = [
k
2

] = m according to (2.7) with pk−1 = γ
(n)
k . This and (3.4)

imply that the sequence Kn stably approximates �(ḡ) (see the last statement in subsection 3.1).
We make this point more concrete and define a norm in the spaces Kn. It follows from (3.4)
that the subspace Pn�

− would be m-dimensional negative for large enough n and we take the
space K−

n = Pn�
− for the m-dimensional negative subspace of Kn. For these n we define the

norm in Kn as the Hilbert norm associated with the decomposition Kn = Pn�
− ⊕ (Pn�

−)⊥.
The following theorem describes the approximation of the m-model by a sequence of

(1k)-models which is close to the approximation results in [28, lemmas 3.8, 3.11, 3.15 and
theorem 1].

Theorem 3.1. Let the sequence ψ(n) ∈ H−2\H0 approximate ϕ ∈ H−k−1\H−k and conditions
(2.12) with l = 1 hold. Then the sequence of Kn approximates �(ḡ) and with g ∈ R ∪ {∞}
and z ∈ ρ(Hg(ĝ)∥∥j−1

n R̃g
n(z)jnF − (Hg(ĝ) − z)−1F

∥∥
�(ḡ)

n→∞−→ 0, F ∈ �(ḡ), (3.6)

and the sequence
(
A

g
n − z

)−1
strongly approximates (Hg(ĝ) − z)−1:∥∥(

Ag
n − z

)−1
PnF − Pn(H

g(ĝ) − z)−1F
∥∥
Kn

n→∞−→ 0, F ∈ �(ḡ). (3.7)

Proof. The first statement was explained before the theorem. For (3.6), which is similar to the
results of [28, lemma 3.8, lemma 3.11], we use theorem 2.5 and Krein’s formula (2.15) and also
that the topology of �(ḡ) is equivalent to the topology of the orthogonal sum H0 ⊕ C

m ⊕ C
m.

By these results the coordinate transcription in the representation �(ḡ) = H0 ⊕ C
m ⊕ C

m

of the operator-functions j−1
n R̃

g
n(z)jn and (Hg(ĝ) − z)−1 are given by the same formulae, but
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with the only difference that for the first functions the data ψ(n), g(n)
s , s = 1, k stand instead of

the fixed data ϕ, gs, s = 1, k. As Rg(z) depends on ϕ, gs, s = 1, k linearly and continuously
in ϕ ∈ H−k−1 and, also, by assumption, the first variable data approximate the second ones,
approximation (3.6) follows.

To prove (3.7) we set Hg ≡ Hg(ĝ) and write the square of the norm on the left as

‖Xn‖2
Kn

= 〈Xn,Xn〉Kn
+ 2‖Xn‖2

K−
n
, Xn = (

Ag
n − z

)−1
PnF − Pn(H

g − z)−1F.

Then we use Pn = V ∗
n jn and the equality

(
A

g
n − z

)−1
V ∗

n = V ∗
n R̃

g
n(z), which is adjoint to (3.3),

and write

Xn = V ∗
n R̃g

n(z)jnF − V ∗
n jn(Hg − z)−1F.

Using the fact that V ∗
n is an isometry if k = 2m + 1 and a partial isometry if k = 2m we obtain

for k = 2m

〈Xn,Xn〉Kn
= 〈

PR(Vn)Yn, Yn

〉
�n

, Yn = R̃g
n(z)jn − jn(Hg − z)−1F ;

the same formula, but with the projection PR(Vn) replaced by the identity operator, holds
in the case k = 2m + 1. Then we use in the case k = 2m estimate (3.5) and in both
cases, k is even/odd, convergence (3.6) and obtain that 〈Xn,Xn〉Kn

n→∞−→ 〈F,F 〉�(ḡ). To
get the convergence of ‖Xn‖2

K−
n

we take an orthonormal basis {wj }mj=1 in �− and the

induced basis {Pnwj }mj=1 in K−
n . Doing as before we get 〈Xn, Pnwj 〉K−

n

n→∞−→ 〈F,wj 〉�−

and 〈PnwiPnwj 〉K−
n

n→∞−→ δij for the elements of the Gram matrix. Hence ‖Xn‖2
K−

n

n→∞−→
‖F‖2

�− . �

4. Example: approximation related to the Bessel equation

We consider here an example of a high singular perturbation related to the Bessel differential
expression �νy(x) = −y ′′(x) + ν2−1/4

x2 y(x), x ∈ (0,∞). In the case 0 < ν < 1 the
corresponding minimal operator S in L2(R+) is symmetric and has defect indices (1, 1). We
denote by L the self-adjoint extension of S which was uniquely determined so that its spectrum
is absolutely continuous, σ(L) = [0,∞), and the functions y(x, λ) = C(λ)x1/2Jν(x

√
λ),

λ ∈ [0, a) form the complete set of generalized eigenfunctions of L. Then the function

ϕ(x, z) = √
x(−z)

ν
2 Kν(x

√−z), Kν(ζ ) = i
π

2
ei π

2 νH (1)
ν (iζ ), (4.1)

where H(1)
ν (ζ ) is the Hankel function of order ν, so Kν(ζ ) is the modified Bessel function of

the third kind (the MacDonald function), belongs to ker(S∗ − z) and is the defect function for
S and L. The function

Q(z) = −π

2

(−z)ν

sin πν
(4.2)

is a Q-function associated with S and L. Here the branch of (−z)ν is chosen so that
(−z)ν = rν eiν(θ−π) if z = r eiθ , 0 < θ < 2π . If 0 < ν < 1 Q(z) is a Nevanlinna function,
which satisfies conditions (2.3). This is the classical result, see [30].

If ν � 1 there is a unique self-adjoint realization L of �ν in H0 = L2(R+) which we
call the Bessel operator. In the following we consider only the noninteger case, when ν > 1
and ν �= 2, 3, . . . . The function Q(z) (4.2) has sense for these ν and belongs to the class
Nm with m = [

ν+1
2

]
negative squares. Also Q(z) admits representation (2.5) with this m and

also representation (1.2) with k = [ν] + 1. This was shown in [12], where the realization
of the Bessel expression in a Pontryagin space � with ind � = m was described. For
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z ∈ ρ(L) the function ϕ(x, z) ∈ H1−k\H2−k and the generalized element ϕ is identified
with the generalized element ϕB = (L − µ)ϕ(· , µ), µ < 0. The space � is the Pontryagin
space �(ḡ) from subsection 2.3, where the parameters gs, s = 2, [ν] should be given by
gs = gB

s := 1
(s−1)!Q

(s−1)(µ); Q(l)(z) stands for lth derivative of Q(z). The corresponding
realization, we call it the Bessel m-model, in �(ḡ) is given by the family of self-adjoint
operators Hg(ĝ) (2.14) with these data.

Next we consider a regular boundary problem associated with �ν and then a relation
between regular and singular models. This will explain the appearance of the indefinite metric
in singular problems.

Let ν > 1, ν �= 2, 3, . . . , ε > 0 be a parameter and L be the Bessel operator in H0.
Consider the symmetric restriction Lmin = L |{f ∈dom L|f (ε)=0}. As it is known all self-adjoint
extensions of Lmin in H0 form a one-parameter family and are restrictions of the maximal
operator L∗

min by the boundary condition

h′(ε + 0) − h′(ε − 0) = αh(ε), h ∈ dom L∗
min, α ∈ R ∪ {∞}.

L corresponds to α = 0. We denote other extensions by Lα . The Lα can be treated either as
an H−1– perturbation of L, or as an H−2-perturbation of L∞ [29]. In the first interpretation
Lα is considered as singular perturbation (1.1) of L with ψε = δ(x − ε). Making a rescaling
we redefine this element as ψε = βε− ν+1

2 δ(x − ε), where β is a real constant; it is equivalent
to a rescaling of α in the boundary condition. A calculation with Bessel functions proves that
the function

ψε(x, z) = βε−νx1/2(Kν(ε
√−z)Iν(x

√−z)χ[0,ε](x) + Iν(ε
√−z)Kν(x

√−z)χ[ε,∞](x)),

where χ[a,b](x) denotes the characteristic function of interval [a, b], is a defect function, see
subsection 2.1 for the definition, and the function

Qε(z) = β2ε−2νIν(ε
√−z)Kν(ε

√−z)

is a Q-function for Lmin and L. Qε(z) ∈ N0 and satisfies (2.3) and (2.8)(ii). The
function ψε(x, z) corresponds to (L − z)−1ψε and Qε(z) = 〈(L − z)−1ψε,ψε〉0. Taking
β = 2ν�(ν + 1), assuming z ∈ C\R

+ and using the series representations of the functions
Iν(ζ ),Kν(ζ ) we obtain that

Qε(z) = p[ν](z, ε) + Q(z) + ε2([ν]−ν+1)z[ν]+1f1(ε
2z) + ε(−z)ν+1f2(ε

2z). (4.3)

Here Q(z) is function (4.2), p[ν](z, ε) = ∑[ν]
s=0 ps(ε)z

s, with ps(ε) = psε
2s−2ν , where the ps

are real numbers independent of ε, and f1(ζ ), f2(ζ ) are entire functions.
In (4.3), besides Q(z), there are two generalized Nevanlinna functions

Q̂ε(z) := Qε(z) − p[ν](z, ε) and Q̃ε(z) := Q(z) + p[ν](z, ε).

The function Q̃ε(z) ∈ Nm and is of the form (2.5), as Q(z) ∈ Nm. It is relevant to an
approximation problem considered in [17, 25]. But here we concentrate on the first function
Q̂ε(z), which is just of the form (2.6). The asymptotic estimates for Q̂ε(z) and its [ν]
derivatives

Q̂ε(z) = Q(z) + O(ε2([ν]−ν+1)), Q̂(j)
ε (z) = Q(j)(z) + O(ε2([ν]−ν+1)), j = 1, [ν],

(4.4)

follow easily from formula (4.3). Take a sequence εn → 0, when n → ∞. From (4.4) it
follows that the functions Q̂εn

(z) with z ∈ C\R
+ approximate the function Q(z) (4.2) together

with the first [ν] derivatives, when n → ∞.
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Next consider the function ψε(x, µ). We observe that the function (4.1) ϕ(x, µ) �= 0 for
x > 0, as Kν(ζ ) �= 0 on R

+. Using this we write ψε(x, µ) = ϕ(x, µ)ηε(x) with

ηε(x) =βε−ν |µ|−ν/2

(
Kν(ε

√|µ|)Iν(x
√|µ|)

Kν(x
√|µ|) χ[0,ε](x) + Iν(ε

√
|µ|)χ[ε,∞](x)

)
.

The whole coefficient with the multiplier βε−ν |µ|−ν/2 in front of χ[ε,∞](x) is estimated
as 1 + O(ε2), when ε → 0, and the absolute value of the whole coefficient function
(with the multiplier) in front of χ[0,ε](x) with x � ε is estimated by the function
β|µ|−ν/2|Iν(x

√|µ|)|x�ε = O(εν). As a result we obtain the estimate
‖ψε(· , µ) − ϕ(· , µ)‖1−k � ‖ϕ(· , µ)χ[0,ε](·)‖1−k + o(ε), which implies the convergence

ψεn
(x, µ)

n→∞−→ ϕ(x, µ) in H1−k . Hence we conclude that for n → ∞ the sequence
ψεn

= (L − µ)ψεn
(· , µ) approximates ϕB in H−k−1.

Next we apply the results of sections 2 and 3 and describe the corresponding operator
contents of this approximation. Taking k = [ν] + 1 and identifying

ψ(n) = ψεn
, ψ(n)(z) ≡ ψεn

(· , z), ψ
(n)
i = (L − µ)−i+1ψεn

(· , µ)

γ
(n)
s+1 ≡ − 1

s!

ds

dzs
pk−1(z, εn)|z=µ, s = 1, k − 1,

(4.5)

we get Q̂εn
(z)− Q̂εn

(µ) + g = Q1k(z)|ψ = ψ(n), γ̂ = γ̂ (n), γ1 = g, where Q1k(z) is function
(1.4), and the sequence of these functions approximates the defining function Q(z)−Q(µ)+g

of the Bessel m-model. Also the approximation of derivatives Q̂
(j)
εn

(z)
n→∞−→ Q̂(j)(z), j =

1, k − 1 implies the asymptotic conditions (2.12), where l = 1 and gs are taken from the Bessel
data gs = gB

s . Then we take for the variable spaces and operators the spaces Kn ≡ K(γ̄ (n)) and
the operators A

g
n ≡ Ag(γ̄ (n)) of the (1k)-model of subsection 2.4 with data (4.5). Applying

theorem 3.1 to this case we conclude that in the sense of the theorem the described spaces Kn

and the operators A
g
n approximate �(ḡ) and Hg(ĝ) of the Bessel m-model in the case ν > 1,

ν �= 2, 3, . . . .
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